
by Jesse Jenkins, Applications Manager
CPLD Business Unit
Xilinx, Inc.
jesse.jenkins@xilinx.com

Would you like to design your own micro-
controller, but don’t want all the hassle of
starting from scratch with either the
architecture or the support software?

Would you like to update older code from
earlier microcontrollers to run faster and
with the new memory standards?

Would you like to take the same code to
substantially lower power dissipation?

Would you like to gain insight into
the inner workings of a microcontroller
with in-depth simulation as well as code
creation support?

If the answer is yes to any of these questions,
read on about the new Xilinx PicoBlaze™
microcontroller reference design. It’s here
now, it’s fast, and maybe most important of
all, it’s free. This article details the CPLD
version of the PicoBlaze reference design,
and including where to get the application
code, examples, and the cross assembler.
With that under your belt, you are ready to
start – but first, a little more detail.

PicoBlaze Explained
The PicoBlaze soft microcontroller is an 8-
bit design that supports an 8-bit data bus
and 16-bit instruction bus. As you may
have guessed, the PicoBlaze design is based
on the RISC (reduced instruction set com-
puter) “Harvard architecture” model with
separate data and instruction ports. The
PicoBlaze design is written in VHDL, and
is intentionally documented so that the
accompanying cross assembler directly
tracks the architecture.

The PicoBlaze version currently shipping
supports 49 instructions that operate within
any of several Xilinx CoolRunner™-II
CPLDs. The speed will vary depending on
exactly which instructions you wish to sup-
port and which version of the architecture
you choose.

For instance, with the full instruction

Build your own soft microcontroller in a
CoolRunner-II CPLD. It’s easy, fast, and free.

Reduce Your RISC
with a PicoBlaze
Reference Design

00 Xcell Journal Spring 2003

Reduce Your RISC
with a PicoBlaze
Reference Design
Build your own soft microcontroller in a
CoolRunner-II CPLD. It’s easy, fast, and free.

set and all instructions held outside the
CPLD, you can expect to achieve about 30
MHz performance. By streamlining either
the instruction set or the program, you can
triple performance to 90 MHz.

Naturally, the PicoBlaze microcontroller
architecture takes advantage of the two
key CoolRunner-II features – high-speed
execution and low power consumption.

Add or Delete Instructions
Figure 1 shows the PicoBlaze base architec-
ture, but don’t restrict your thinking to that
architecture alone. Think of it as a starting
point. You are free to either add or delete
capability as you see fit.

For instance, you can trim instructions
from the instruction set by merely com-
menting them out of the VHDL. If you
wish, you can also remove them from the
assembler, but that is not required. You
can also add instructions, if you have
some application that can take advantage
of essential instructions beyond those
currently supplied.

It’s also possible to do both – cut some
instructions and add some instructions.
For instance, most programmers use about
20 instructions in their day-to-day pro-
gramming. Select the 20 you typically use,
remove the rest, and then program. If you
discover a bottlenecking “inner loop” that
could benefit from a single instruction cus-
tomized for that specific task, go ahead and
write the VHDL that will do it at hardware
speeds. Remember, the PicoBlaze micro-
controller uses DualEDGE flip-flops with-
in the processor to accomplish
computation on both clock edges.

A DSP Example
To illustrate the ability of the PicoBlaze
architecture to adapt, let’s look at an exam-
ple from DSP. The code to bit-reverse a bus
is a fundamental operation used in Fast
Fourier Transforms. The value is then typi-
cally driven out on the address lines as a
critical step in the base algorithm. To do
this in “standard” instructions would take
multiple “mask and rotate” commands,
creating a processing bottleneck.

Figure 2 shows the basic operations in
assembler-like steps to display register con-

pointers and counters and unroll it.
In Figure 3, the “flip” instruction is

added to the VHDL, the design is recom-
piled, and the processor is “rewired” to add
in this key instruction. This method col-
lapses many instructions down to some
gate rewiring with the synthesis tools. Very
many bit-level operations boil down to
simply rewiring the CPU, and best of all,
the synthesizer does the work. Many other
examples exist. See the links at the end of
this article.

tents. The algorithm starts with a byte of
data labeled A-H. This byte is first inter-
nally swapped (four rotates), then succes-
sively, inner bits are picked off with
Boolean AND/OR into a target register
that will build up the results, two bits at a
time. One pass through this results in the
final register with the original contents
reversed. Depending on algorithm details,
it can take approximately 12 to 18 instruc-
tions. In this case, we dispense with adding
the overhead of loop management with

Spring 2003 Xcell Journal 00

8
OUT_PORT

8

8

8

8

8 PORT_ID

READ_STROBE

WRITE_STROBE

INTERRUPT

8 8
ADDRESS

8

RESET

CLK

16INSTRUCTION

8

8

8

8
IN_PORT

CONSTANT DATA

Interrupt
Control

8 Registers
8-bit

Program
Flow

Control

ZERO &
CARRY
Flags

ALU

Interrupt
Flag
Store

Program
Counter

Program
Counter

Stack

Operational
Control &
Instruction
Decoding

Port
Address
Control

A B C D E F G H

E F G H A B C D

0 0 0 1 0 0 0 1

0 0 0 H 0 0 0 D

D E F G H A B C

Initial value

Swap nibbles

Mask 2 bits

Right Rot Swap

0 0 H 0 0 0 D 0

0 0 0 1 0 0 0 1

0 0 H G 0 0 D C

C D E F G H A B

Mask 2 bits

Right Rot Swap

0 H G 0 0 D C 0

0 0 0 1 0 0 0 1

0 H G F 0 D C B

B C D E F G H A

Mask 2 bits

Right Rot Swap

H G F 0 D C B 0

0 0 0 1 0 0 0 1

H G F E D C B A

Mask 2 bits

Final result is bit-reversed

Or Int. Result

Left Rot Int. Result

Or Int. Result

Left Rot Int. Result

Or Int. Result

Left Rot Int. Result

OR Int. Result

Figure 1 - PicoBlaze architecture

Figure 2 - Bit-reversal code steps

Processor Enhancement
We just mentioned instruction set opti-
mization, but it’s also possible to add
functionality. Remember that many micro-
controllers include on-board function
blocks that have a payoff beyond the
instruction set. For instance, many 8-bit
microcontrollers include internal peripheral

counters or timers, interrupt handlers, and
DMA circuits. With PicoBlaze, just add the
right set of peripheral capability within the
chip, depending on the density of the
CoolRunner-II CPLD chosen. Table 1
shows the densities available in
CoolRunner-II CPLDs, and Table 2 gives
some estimates of macrocell usage for vari-
ous add-on functions.

One very important thing to remember
is that when choosing a function to add in,
select just the functionality actually needed,
so you will get the best usage from your
choice. Bill Carter, one of the founders of
Xilinx, frequently comments that most peo-
ple don’t really want or need a UART (uni-
versal asynchronous receiver/transmitter),
but only an “RT.” That is, they select a func-
tion that comes with 50 options, then only
use two. They end up carrying along lots of

unused circuitry that they pay for but never
really use. Don’t fall into that trap. Select the
functions you will need and get the cheap-
est, fastest, lowest power solution possible.
Note that most of the items listed in Table 2
exist as separate reference designs and may
be found on the Xilinx website.

Performance Improvement
Getting the most out of your design will be
another step. A classic way to improve the
design is to “tune” it. Observe its perform-
ance behavior, identify where the processor
is spending its time, discover what it is
doing, and think through the best set of
operations to improve. Then, implement a
new version of the architecture and/or code
and evaluate it again.

One easy way to do that is with the
CoolRunner-II Design Kit (see Figure 4).
Many target designs easily fit onto the 256-
macrocell XC2C256 that resides on that
board. There is also a blank pinout site for
adding a 64 macrocell XC2C64, with sig-
nals already attached to the XC256. Simply
construct a small hardware performance
monitor that will time various code sections
and report back the execution time. That
way, by examining the behavior over address
space and time, you can determine just how
much time is spent doing the various tasks.

Figure 5 shows a simple approach to
doing this operation. With care, both

A B C D E F G H

H G F E D C B A

CoolRunner-II XC2C32 XC2C64 XC2C128 XC2C256 XC2C384 XC2C512

Macrocells 32 64 128 256 384 512

MAX I/O 33 64 100 184 240 270

TPD (ns) 3.5 4.0 4.5 5.0 5.5 6.0

TSU (ns) 1.7 2.0 2.1 2.2 2.3 2.4

TCO (ns) 2.8 3.0 3.4 3.8 4.2 4.6

Fsystem1 (MHz) 333 270 263 238 217 217

Function Macrocells

IrDA and UAR/T 87

Timer/Counter 16 and up

DMA Port 16-32

Manchester Encoder/Decoder 55

Wireless XCVR 156

16b/20b Encoder/Decoder 76

Flash NAND Interface 9

SPI Interface 135

UAR/T 61

DDR SDRAM Interface 128

SMBus Controller 158

00 Xcell Journal Spring 2003

Figure 3 - Recoded instruction
for bit-reversal (“flip”) operation

Figure 4 - CoolRunner-II Design Kit

Table 1 - CoolRunner-II macrocell capacities and pertinent data

Table 2 - Common functions and approximate
CoolRunner-II macrocell usage

CPLDs can communicate through a PC par-
allel port via their JTAG boundary scan
chains. Performance monitoring can help
decide which aspects of the PicoBlaze design
to perform in software and which to embody
in hardware. One beautiful thing about
building functions out of programmable
logic is that different experiments to focus on
specific performance targets are easily devel-
oped – giving you highly tuned, fast designs.

And you don’t have to worry about power
enhancement. CoolRunner-II CPLDs are
already the lowest power CPLDs available
today, and PicoBlaze is a very competitive
low power microcontroller.

PicoBlaze Cross Assembler
As mentioned before, the PicoBlaze cross
assembler is so well documented that a
direct correspondence between assembly
code and VHDL in the PicoBlaze design
file already exists. The translator is written
in ANSI-C and is assembled on Microsoft
assemblers. The cross assembler is highly
transportable and supports multiple output
file types. For instance, it produces a bina-
ry output file ready to load into external
EPROM in Intel hex format.

The cross assembler also produces the
essential modeling files for the VHDL sim-
ulator. You can instantly analyze your pro-
duced code with high-speed simulations to
determine the functionality and effective-
ness of the code you have implemented.
Then download the code into the
CoolRunner-II Design Kit and see that
they actually do work as expected.

Conclusions and Recommendations
This introduction to designing PicoBlaze
microcontrollers was written to stimulate
your imagination to discover the fascinat-
ing world of creating your own CPUs.
Once you start, it can be addictive. You can
easily alter the processor to be 16 or even
32 bits wide – or even non-binary powers.
Then you will discover which instructions
burn through the macrocells and what the
new speed limits will be.

Do you need some instructions for 8

bits and others for 16? It’s up to you.
Application areas where these kinds of
processors make sense include industrial
control, low-power portable DSP (brain-
waves, EKG, medical), and cryptography.
Did you know that most cryptographic
operations are bit-level operations and
almost never do floating point arithmetic?

The PicoBlaze microcontroller reference
design for CPLDs has been built, tested,
and is now available over the Internet, free
to the user.

Spring 2003 Xcell Journal 00

Acknowledgements
Xilinx engineer Ken Chapman, who received additional support and encouragement
from Henk van Kampen at Mediatronix BV, developed the original reference design.
The CPLD version was created by Scott Lien, who also wrote the PicoBlaze cross
assembler and the application note that is on the Xilinx website. The VHDL and
cross assembler (source and executable) links are shown in xapp387 (see below).

For more information, see the following:

CoolRunner-II Design Kit:
www.xilinx.com/products/cpldsolutions/demoboard.htm (purchasing details)

CoolRunner-II Application Notes
www.xilinx.com/xapp/xapp375.pdf (timing model)
www.xilinx.com/xapp/xapp376.pdf (logic engine)
www.xilinx.com/xapp/xapp377.pdf (low-power design)
www.xilinx.com/xapp/xapp378.pdf (advanced features)
www.xilinx.com/xapp/xapp379.pdf (high-speed design)
www.xilinx.com/xapp/xapp380.pdf (cross point switch)
www.xilinx.com/xapp/xapp381.pdf (demo board)
www.xilinx.com/xapp/xapp382.pdf (I/O characteristics)
www.xilinx.com/xapp/xapp383.pdf (single error correction, double error detection)
www.xilinx.com/xapp/xapp384.pdf (DDR SDRAM interface)
www.xilinx.com/xapp/xapp387.pdf (PicoBlaze microcontroller)
www.xilinx.com/xapp/xapp388.pdf (on-the-fly reconfiguration)
www.xilinx.com/xapp/xapp389.pdf (powering CoolRunner-II CPLDs)

CoolRunner-II Data Sheets
www.xilinx.com/bvdocs/publications/ds090.pdf (CoolRunner-II CPLD family data sheet)
www.xilinx.com/bvdocs/publications/ds091.pdf (XC2C32 data sheet)
www.xilinx.com/bvdocs/publications/ds092.pdf (XC2C64 data sheet)
www.xilinx.com/bvdocs/publications/ds093.pdf (XC2C128 data sheet)
www.xilinx.com/bvdocs/publications/ds094.pdf (XC2C256 data sheet)
www.xilinx.com/bvdocs/publications/ds095.pdf (XC2C384 data sheet)
www.xilinx.com/bvdocs/publications/ds096.pdf (XC2C512 data sheet)

CoolRunner-II White Papers
www.xilinx.com/publications/products/cool2/wp_pdf/wp165.pdf (chip scale packaging)
www.xilinx.com/publications/whitepapers/wp_pdf/wp170.pdf (security)

8

8

8

16

Out

Interrupt

Address

Instructions

Instruction
Memory

Timer

Counter

D
ec

od
e

Performance Monitor
(XC2C64)

In

PicoBlaze
(XC2C256)

Figure 5 - PicoBlaze performance monitor

